Accounting Formatting In Pandas Df
Solution 1:
Your output looks like you are using the HTML
display in the Jupyter notebook, so you will need to set pre
for the white-space
style, because HTML
collapses multiple whitespace, and use a monospace
font, e.g.:
styles = {
'font-family': 'monospace',
'white-space': 'pre'
}
x_style = x.style.set_properties(**styles)
Now to format the float, a simple right justified with $
could look like:
x_style.format('${:>10,.0f}')
This isn't quite right because you want to convert the negative number to (2)
, and you can do this with nested formats, separating out the number formatting from justification so you can add ()
if negative, e.g.:
x_style.format(lambda f: '${:>10}'.format(('({:,.0f})' if f < 0 else '{:,.0f}').format(f)))
Note: this is fragile in the sense it assumes 10
is sufficient width, vs. excel which dynamically left justifies $
to the maximum width of all the values in that column.
An alternative way to do this would be to extend string.StringFormatter
to implement the accounting format logic.
Post a Comment for "Accounting Formatting In Pandas Df"