Python Eratosthenes Sieve Algorithm Optimization
Solution 1:
Your algorithm is not the Sieve of Eratosthenes. You perform trial division (the modulus operator) instead of crossing-off multiples, as Eratosthenes did over two thousand years ago. Here is an explanation of the true sieving algorithm, and shown below is my simple, straight forward implementation, which returns a list of primes not exceeding n:
def sieve(n):
m = (n-1) // 2
b = [True]*m
i,p,ps = 0,3,[2]
while p*p < n:
if b[i]:
ps.append(p)
j = 2*i*i + 6*i + 3
while j < m:
b[j] = False
j = j + 2*i + 3
i+=1; p+=2
while i < m:
if b[i]:
ps.append(p)
i+=1; p+=2
return ps
We sieve only on the odd numbers, stopping at the square root of n. The odd-looking calculations on j map between the integers being sieved 3, 5, 7, 9, ... and indexes 0, 1, 2, 3, ... in the b array of bits.
You can see this function in action at http://ideone.com/YTaMB, where it computes the primes to a million in less than a second.
Solution 2:
You can try the same way Eratosthenes did. Take an array with all numbers you need to check order ascending, go to number 2 and mark it. Now scratch every second number till the end of the array. Then go to 3 and mark it. After that scratch every third number . Then go to 4 - it is already scratched, so skip it. Repeat this for every n+1 which is not already scratched.
In the end, the marked numbers are the prime one. This algorithm is faster, but sometimes need lots of memory. You can optimize it a little by drop all even numbers (cause they are not prime) and add 2 manually to the list. This will twist the logic a little, but will take half the memory.
Here is an illustration of what I'm talking about: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
Solution 3:
Warning: removing elements from an iterator while iterating on it can be dengerous...
You could make the
if(thing % divisor == 0) and thing != divisor:
test lighter by splitting it in the loop that breaks when you arrive to the index of 'divisor' and then the test:
for thing in numberList_fromDivisorOn:
if(thing % divisor == 0):
numberList.remove(thing)
Solution 4:
This code takes 2 seconds to generate primes less than 10M (it is not mine, i found it somewer on google)
def erat_sieve(bound):
if bound < 2:
return []
max_ndx = (bound - 1) // 2
sieve = [True] * (max_ndx + 1)
#loop up to square root
for ndx in range(int(bound ** 0.5) // 2):
# check for prime
if sieve[ndx]:
# unmark all odd multiples of the prime
num = ndx * 2 + 3
sieve[ndx+num:max_ndx:num] = [False] * ((max_ndx-ndx-num-1)//num + 1)
# translate into numbers
return [2] + [ndx * 2 + 3 for ndx in range(max_ndx) if sieve[ndx]]
Solution 5:
I followed this link: Sieve of Eratosthenes - Finding Primes Python as suggested by @MAK and I've found that the accepted answer could be improved with an idea I've found in your code:
def primes_sieve2(limit):
a = [True] * limit # Initialize the primality list
a[0] = a[1] = False
sqrt = int(math.sqrt(limit))+1
for i in xrange(sqrt):
isprime = a[i]
if isprime:
yield i
for n in xrange(i*i, limit, i): # Mark factors non-prime
a[n] = False
for (i, isprime) in enumerate(a[sqrt:]):
if isprime:
yield i+sqrt
Post a Comment for "Python Eratosthenes Sieve Algorithm Optimization"