Difference Between Two Dates In Pandas Dataframe
Solution 1:
You need to convert the strings to datetime
dtype, you can then subtract whatever arbitrary date you want and on the resulting series call dt.days
:
In [15]:
df = pd.DataFrame({'date':['2015-09-25T01:45:34.372Z']})
df
Out[15]:
date
0 2015-09-25T01:45:34.372Z
In [19]:
df['date'] = pd.to_datetime(df['date'])
df['day'] = (df['date'] - dt.datetime.now()).dt.days
df
Out[19]:
date day
0 2015-09-25 01:45:34.372 -252
Solution 2:
Well, it all kinda depends on the time format you use. I'd recommend using datetime.
If in_time
and out_time
are currently strings, convert them with datetime.strptime()
:
from datetime import datetime
f = lambda x: datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%fZ')
df.in_time = df.in_time.apply(f)
df.out_time = df.out_time.apply(f)
and then you can simply subtract them, and assign the result to a new column named 'days':
df['days'] = df.out_time - df.in_time
Example: (3 seconds and 1 day differences)
In[5]: df = pd.DataFrame({'in_time':['2015-09-25T01:45:34.372Z','2015-09-25T01:45:34.372Z'],
'out_time':['2015-09-25T01:45:37.372Z','2015-09-26T01:45:34.372Z']})
In[6]: df
Out[6]:
in_time out_time
0 2015-09-25T01:45:34.372Z 2015-09-25T01:45:37.372Z
1 2015-09-25T01:45:34.372Z 2015-09-26T01:45:34.372Z
In[7]: type(df.loc[0,'in_time'])
Out[7]: str
In[8]: df.in_time = df.in_time.apply(lambda x: datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%fZ'))
In[9]: df.out_time = df.out_time.apply(lambda x: datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%fZ'))
In[10]: df # notice that it looks exactly the same, but the type is different
Out[10]:
in_time out_time
0 2015-09-25 01:45:34.372 2015-09-25T01:45:37.372Z
1 2015-09-25 01:45:34.372 2015-09-26T01:45:34.372Z
In[11]: type(df.loc[0,'in_time'])
Out[11]: pandas.tslib.Timestamp
And the creation of the new column:
In[12]: df['days'] = df.out_time - df.in_time
In[13]: df
Out[13]:
in_time out_time days
0 2015-09-25 01:45:34.372 2015-09-25 01:45:37.372 0 days 00:00:03
1 2015-09-25 01:45:34.372 2015-09-26 01:45:34.372 1 days 00:00:00
Now you can play with the output format. For example, the portion of seconds difference:
In[14]: df.days = df.days.apply(lambda x: x.total_seconds()/60)
In[15]: df
Out[15]:
in_time out_time days
0 2015-09-25 01:45:34.372 2015-09-25 01:45:37.372 0.05
1 2015-09-25 01:45:34.372 2015-09-26 01:45:34.372 1440.00
Note: Regarding the in_time
and out_time
format, notice that I made some assumptions (for example, that you're using a 24H clock (thus using %H
and not %I
)). To play with the format have a look at: strptime()
documentation.
Note2: It would obviously be better if you can design your program to use datetime
from the beginning (instead of using strings and converting them).
Post a Comment for "Difference Between Two Dates In Pandas Dataframe"