Python Pandas: Create A New Column With Values In English By Converting Values Stored In A Different Column In Chinese Traditional
I have a column 'City_trad_chinese' in a pandas dataframe 'df' which contains values in Traditional Chinese language. I need to create another column 'City_English' which must cont
Solution 1:
You can use the library googletrans
import pandas as pd
from googletrans import Translator
d = {"City_trad_chinese":["香港特别行政区",
"澳门特别行政区",
"北京市",
"上海市"]}
df = pd.DataFrame(data=d)
translator = Translator()
df["City_English"] = df["City_trad_chinese"].map(lambda x: translator.translate(x, src="zh-TW", dest="en").text)
print(df["City_English"])
0 Hong Kong Special Administrative Region
1 Macao Special Administrative Region
2 Beijing City
3 Shanghai City
Note: The Google Translate API has a 15k character limit. You can circumnavigate this by translating each row individually:
df["City_English"] = ""
for index, rowin df.iterrows():
translator = Translator()
eng_text = translator.translate(row["City_trad_chinese"], src="zh-TW", dest="en").text
row["City_English"] = eng_text
Post a Comment for "Python Pandas: Create A New Column With Values In English By Converting Values Stored In A Different Column In Chinese Traditional"