Pandas Dataframe Matrix Based Calculation
I have a Pandas DataFrame as following. It shows how users have accessed pages p1 to p4 in each session. df = pd.DataFrame([[1,1,1,0,1],[2,1,1,0,1],[3,1,1,1,1],[4,0,1,0,1]]) df.col
Solution 1:
I think you are looking for numpy.outer
:
In [10]: df1 = df.set_index('session')
common = df1.dot(df1.T)
In [11]: df1.sum(1)
Out[11]:
session
1 3
2 3
3 4
4 2
dtype: int64
In [12]: np.outer(*[df1.sum(1)] * 2) # same as np.outer(df1.sum(1), df1.sum(1))
Out[12]:
array([[ 9, 9, 12, 6],
[ 9, 9, 12, 6],
[12, 12, 16, 8],
[ 6, 6, 8, 4]])
In [13]: np.sqrt(np.outer(*[df1.sum(1)] * 2))
Out[13]:
array([[ 3. , 3. , 3.46410162, 2.44948974],
[ 3. , 3. , 3.46410162, 2.44948974],
[ 3.46410162, 3.46410162, 4. , 2.82842712],
[ 2.44948974, 2.44948974, 2.82842712, 2. ]])
In [14]: common / np.sqrt(np.outer(*[df1.sum(1)] * 2))
Out[14]:
session 1 2 3 4
session
1 1.000000 1.000000 0.866025 0.816497
2 1.000000 1.000000 0.866025 0.816497
3 0.866025 0.866025 1.000000 0.707107
4 0.816497 0.816497 0.707107 1.000000
Post a Comment for "Pandas Dataframe Matrix Based Calculation"