Numpy Matrix Power/exponent With Modulo?
Solution 1:
In order to prevent overflow, you can use the fact that you get the same result if you first take the modulo of each of your input numbers; in fact:
(M**k) mod p = ([M mod p]**k) mod p,
for a matrixM
. This comes from the following two fundamental identities, which are valid for integers x
and y
:
(x+y) mod p = ([x mod p]+[y mod p]) mod p # All additions can be done on numbers *modulo p*
(x*y) mod p = ([x mod p]*[y mod p]) mod p # All multiplications can be done on numbers *modulo p*
The same identities hold for matrices as well, since matrix addition and multiplication can be expressed through scalar addition and multiplication. With this, you only exponentiate small numbers (n mod p is generally much smaller than n) and are much less likely to get overflows. In NumPy, you would therefore simply do
((arr % p)**k) % p
in order to get (arr**k) mod p
.
If this is still not enough (i.e., if there is a risk that [n mod p]**k
causes overflow despite n mod p
being small), you can break up the exponentiation into multiple exponentiations. The fundamental identities above yield
(n**[a+b]) mod p = ([{n mod p}**a mod p] * [{n mod p}**b mod p]) mod p
and
(n**[a*b]) mod p = ([n mod p]**a mod p)**b mod p.
Thus, you can break up power k
as a+b+…
or a*b*…
or any combination thereof. The identities above allow you to perform only exponentiations of small numbers by small numbers, which greatly lowers the risk of integer overflows.
Solution 2:
Using the implementation from Numpy:
https://github.com/numpy/numpy/blob/master/numpy/matrixlib/defmatrix.py#L98
I adapted it by adding a modulo term. HOWEVER, there is a bug, in that if an overflow occurs, no OverflowError
or any other sort of exception is raised. From that point on, the solution will be wrong. There is a bug report here.
Here is the code. Use with care:
from numpy.core.numeric import concatenate, isscalar, binary_repr, identity, asanyarray, dot
from numpy.core.numerictypes import issubdtype
defmatrix_power(M, n, mod_val):
# Implementation shadows numpy's matrix_power, but with modulo included
M = asanyarray(M)
iflen(M.shape) != 2or M.shape[0] != M.shape[1]:
raise ValueError("input must be a square array")
ifnot issubdtype(type(n), int):
raise TypeError("exponent must be an integer")
from numpy.linalg import inv
if n==0:
M = M.copy()
M[:] = identity(M.shape[0])
return M
elif n<0:
M = inv(M)
n *= -1
result = M % mod_val
if n <= 3:
for _ inrange(n-1):
result = dot(result, M) % mod_val
return result
# binary decompositon to reduce the number of matrix# multiplications for n > 3
beta = binary_repr(n)
Z, q, t = M, 0, len(beta)
while beta[t-q-1] == '0':
Z = dot(Z, Z) % mod_val
q += 1
result = Z
for k inrange(q+1, t):
Z = dot(Z, Z) % mod_val
if beta[t-k-1] == '1':
result = dot(result, Z) % mod_val
return result % mod_val
Solution 3:
What's wrong with the obvious approach?
E.g.
import numpy as npx= np.arange(100).reshape(10,10)
y = np.linalg.matrix_power(x, 2) % 50
Solution 4:
I had overflow issues with all the previous solutions, so I had to write an algorithm that accounts for overflows after every single integer multiplication. This is how I did it:
defmatrix_power_mod(x, n, modulus):
x = np.asanyarray(x)
iflen(x.shape) != 2:
raise ValueError("input must be a matrix")
if x.shape[0] != x.shape[1]:
raise ValueError("input must be a square matrix")
ifnotisinstance(n, int):
raise ValueError("power must be an integer")
if n < 0:
x = np.linalg.inv(x)
n = -n
if n == 0:
return np.identity(x.shape[0], dtype=x.dtype)
y = Nonewhile n > 1:
if n % 2 == 1:
y = _matrix_mul_mod_opt(x, y, modulus=modulus)
x = _matrix_mul_mod(x, x, modulus=modulus)
n = n // 2return _matrix_mul_mod_opt(x, y, modulus=modulus)
defmatrix_mul_mod(a, b, modulus):
iflen(a.shape) != 2:
raise ValueError("input a must be a matrix")
iflen(b.shape) != 2:
raise ValueError("input b must be a matrix")
if a.shape[1] != a.shape[0]:
raise ValueError("input a and b must have compatible shape for multiplication")
return _matrix_mul_mod(a, b, modulus=modulus)
def_matrix_mul_mod_opt(a, b, modulus):
if b isNone:
return a
return _matrix_mul_mod(a, b, modulus=modulus)
def_matrix_mul_mod(a, b, modulus):
r = np.zeros((a.shape[0], b.shape[1]), dtype=a.dtype)
bT = b.T
for rowindex inrange(r.shape[0]):
x = (a[rowindex, :] * bT) % modulus
x = np.sum(x, 1) % modulus
r[rowindex, :] = x
return r
Post a Comment for "Numpy Matrix Power/exponent With Modulo?"