Calculate Distance Between Neighbors Efficiently
I have data geographically scattered without any kind of pattern and I need to create an image where the value of each pixel is an average of the neighbors of that pixel that are l
Solution 1:
This may be one of the cases where KDTrees are not a good solution. This is because you are mapping to a grid, which is a very simple structure meaning there is nothing to gain from the KDTree's sophistication. Nearest grid point and distance can be found by simple arithmetic.
Below is a simple example implementation. I'm using a Gaussian kernel but changing that to IDW if you prefer should be straight-forward.
import numpy as np
from scipy import stats
defrasterize(coords, feature, gu, cutoff, kernel=stats.norm(0, 2.5).pdf):
# compute overlap (filter size / grid unit)
ovlp = int(np.ceil(cutoff/gu))
# compute raster dimensions
mn, mx = coords.min(axis=0), coords.max(axis=0)
reso = np.ceil((mx - mn) / gu).astype(int)
base = (mx + mn - reso * gu) / 2# map coordinates to raster, the residual is the distance
grid_res = coords - base
grid_coords = np.rint(grid_res / gu).astype(int)
grid_res -= gu * grid_coords
# because of overlap we must add neighboring grid points to the nearest
gcovlp = np.c_[-ovlp:ovlp+1, np.zeros(2*ovlp+1, dtype=int)]
grid_coords = (gcovlp[:, None, None, :] + gcovlp[None, :, None, ::-1]
+ grid_coords).reshape(-1, 2)
# the corresponding residuals have the same offset with opposite sign
gdovlp = -gu * (gcovlp+1/2)
grid_res = (gdovlp[:, None, None, :] + gdovlp[None, :, None, ::-1]
+ grid_res).reshape(-1, 2)
# discard off fov grid points and points outside the cutoff
valid, = np.where(((grid_coords>=0) & (grid_coords<=reso)).all(axis=1) & (
np.einsum('ij,ij->i', grid_res, grid_res) <= cutoff*cutoff))
grid_res = grid_res[valid]
feature = feature[valid // (2*ovlp+1)**2]
# flatten grid so we can use bincount
grid_flat = np.ravel_multi_index(grid_coords[valid].T, reso+1)
return np.bincount(
grid_flat,
feature * kernel(np.sqrt(np.einsum('ij,ij->i', grid_res, grid_res))),
(reso + 1).prod()).reshape(reso+1)
gu = 5
cutoff = 10
coords = np.random.randn(10_000, 2) * (100, 20)
coords[:, 1] += 80 * np.sin(coords[:, 0] / 40)
feature = np.random.uniform(0, 1000, (10_000,))
from timeit import timeit
print(timeit("rasterize(coords, feature, gu, cutoff)", globals=globals(), number=100)*10, 'ms')
pic = rasterize(coords, feature, gu, cutoff)
import pylab
pylab.pcolor(pic, cmap=pylab.cm.jet)
pylab.colorbar()
pylab.show()
Post a Comment for "Calculate Distance Between Neighbors Efficiently"