Calculating Average Time Difference Among Items Grouped By A Specific Column
I have the following dataframe: userid | time 1 22.01.2001 13:00 1 22.01.2001 13:05 1 22.01.2001 13:07 2 22.01.2001 14:00 2 22.01.2001
Solution 1:
Consider the following approach:
In [84]: df.sort_values('time').groupby('userid')['time'] \
.apply(lambda x: x.diff().dt.seconds.mean()/60)
Out[84]:
userid
13.500000219.66666732.0000004 NaN
Name: time, dtype: float64
Some explanations:
First we sort the DF by time
column, otherwise we might have negative difference.
Then we group by userid
and for each group we calculate a time difference for all consecutive rows (sorted) - this will produce a Series of timedelta64[ns]
dtype, which has an .dt.seconds
accessor.
Using .dt.seconds.mean()
we can calculate the average for each group
UPDATE:
take the mean over only the differences that are smaller than 60 minutes
In [122]: threshold = 60
...:
...: (df.sort_values('time').groupby('userid')['time']
...: .apply(lambda x: (x.diff().dt.seconds/60)
...: .to_frame('diff')
...: .query("diff < @threshold")['diff'].mean()))
...:
Out[122]:
userid
13.500000219.66666732.0000004 NaN
Name: time, dtype: float64
Post a Comment for "Calculating Average Time Difference Among Items Grouped By A Specific Column"